SILICON NANOWIRES ARRAY FOR MONITORING OF BACTERIAL BIOFILM METABOLIC ACTIVITY

Ella Davidi Vadim Krivitsky Marina Zverzhinetsky Fernando Patolsky
Raymond & Beverly Sackler Faculty of Exact Sciences School of Chemistry, Tel Aviv University

Bacterial biofilms cause severe infections, which are usually difficult to remove without invasive surgery. Cell metabolism, and in particular glucose metabolism, has been shown to reflect the state of living cells and microorganisms. Our goal is to investigate metabolic activity of biofilms in real time, in order to adjust the proper medical treatment to overcome biofilm infection. We created a platform that enables monitoring the metabolic activity of biofilms based on glucose consumption and other metabolites secretion. Monitoring the metabolic activity of biofilms, could help us finding effective treatment approaches. Here we present a series of experiments, monitoring in real time the Bacillus Subtilis biofilm metabolic activity. The metabolic activity of cells has been researched and monitored in our lab, using silicon nanowires (SiNWs) arrays, configured as a field-effect transistor (FET), that enable real time, label-free detection of biological species. We used surface modification on SiNWs FET, to generate a monolayer of the electroactive 9,10-dihydroxyathracene species, in order to perform direct sensing of glucose. We have managed to monitor the metabolic pathway of Bacillus Subtilis Biofilms from glutamate and glycerol consumption to glucose consumption. In addition, we managed to track the glucose consumption during several repetitive cycles. These results support the novel application of these biosensors for real time monitoring of bio-samples, for both clinical and environmental applications.









Powered by Eventact EMS