NANO.IL.

Prevention of Marine Fouling by Slippery Coatings

Joanna Aizenberg Harvard University, USA

Living organisms and biological substances are among the most difficult and persistent sources of surface fouling, particularly in medical and marine settings. The ability of organisms to adapt, move, cooperate, evolve on short timescales, and modify surfaces by secreting proteins and other adhesive molecules enables them to colonize even state-of-the-art antifouling coatings. Attempts to combat these issues are further hindered by conflicting requirements at different size scales and across different species. Our recently developed concept of Slippery, Liquid-Infused Porous Surfaces (SLIPS) provides a defect-free, dynamic liquid interface that overcomes many of these problems at once. In this talk I will present our new results showing that slippery surfaces are outstandingly effective in preventing marine fouling in both laboratory and field conditions. Detailed investigations across multiple length scales—from the molecular scale characterization of deposited adhesion proteins, to nano-scale contact mechanics, to macro-scale live observations— provides new insights into the physical mechanisms underlying the adhesion prevention. We are currently developing this strategy to solve longstanding marine fouling issues and the associated serious economic and ecological consequences for the maritime and aquaculture industries.









Powered by Eventact EMS