Structural superlubricity may provide a viable route to the reduction of friction and wear. In this talk I will present results of fully atomistic numerical simulations of static and dynamical properties of graphite/hexagonal boron nitride (h-BN) heterojunctions, performed adopting a recently developed inter-layer potential. We found that structural superlubricity at interfaces between graphite and h-BN persists even for the aligned contacts sustaining external loads. A negative friction coefficient, where friction is reduced upon increasing normal load, is predicted. It is demonstrated that further control over the physical properties of 2D layered materials can be gained via tuning the aspect-ratio of nanoribbons. The sliding dynamics of the edge-pulled nanoribbons is found to be determined by the interplay between in-plane ribbon elasticity and interfacial lattice mismatch. Our results are expected to be of general nature and should be applicable to other van der Waals heterostructures.