
We generalize triadic closure, along with previous generalizations of triadic closure, under an intuitive umbrella generalization: the Subgraph-to-Subgraph Transition (SST). We present algorithms and code to model graph evolution in terms of collections of these SSTs. We then use the SST framework to create link prediction models for both static and temporal, directed and undirected graphs which produce highly interpretable results that simultaneously match state of the art graph neural network performance.