ICRS-PAT 2021

In vivo engineered B cells retain memory and secrete high titers of anti-HIV antibodies in mice

Alessio D. Nahmad Adi Barzel
Biochemistry and Molecular Biology, Tel Aviv University, Israel

As a potential single-shot HIV therapy, transplanted engineered B cells allow robust secretion of broadly neutralizing antibodies (bNAbs). However, ex vivo engineering of autologous B cells is expensive and requires specialized facilities, while allogeneic B cell therapy necessitates MHC compatibility. Here, we develop in vivo B cell engineering, by injecting two adeno associated viral vectors, one coding for saCas9 and another coding for a bNAb. Following immunizations, we demonstrate memory retention and bNAb secretion at neutralizing titers. We observed minimal CRISPR/Cas9 off-target cleavage, using unbiased CHANGE-Seq analysis, while on-target cleavage at undesired tissues is reduced by expressing saCas9 from a B cell specific promoter. In vivo B cell engineering is thus a safe, potent and scalable method for expressing desired antibodies against HIV and beyond.









Powered by Eventact EMS