Olga Kleinerman
Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

During recent years it has been demonstrated that carbon nanotubes (CNTs) spontaneously dissolve in chlorosulfonic acid (Davis et al., 2009), and at high concentrations form a liquid crystalline phase (Davis et al., 2004). Actually, chlorosulfonic acid (CSA) is the only solvent for CNT, to form thermodynamically stable solutions and liquid crystalline phases, from which carbon nanotube fibers can be spun. Fiber spinning from a liquid crystal state is essential for the high degree of CNT orientation in the fibers, and hence preserving the intrinsic unique properties of individual CNT (such as an exceptional strength and electrical conductivity) in the spun fiber (Behabtu et al., 2013).

The transition between the isotropic and the liquid crystalline phases depends strongly on the CNT type, concentration, and solvent strength. Combination of direct cryogenic transmission- and cryogenic scanning-electron microscopy (cryo-TEM and cryo-SEM) of CNT/CSA solutions at different concentrations allowed us, for the first time to follow phase transformation at nanometric level; from diluted solution to the isotropic phase, through the biphasic region, to the pure liquid crystalline phase, used as the "dope" for fiber spinning (Kleinerman et al., 2017). This work presents the first direct validation of Onsager`s and Flory`s models describing phase transitions in rigid-rod polymers (Onsager, 1949, Flory, 1956) in CNT/super-acid systems.

To allow direct imaging of superacid solutions we developed novel cryo-EM specimen preparation and imaging methodologies, suitable for highly acidic systems. Those techniques preserve the native nanostructure in the system, without harming the expensive equipment and the operator (Kleinerman et al., 2015), and were successfully applied to study CNTs (Davis et al., 2009, Kleinerman et al., 2017) and boron nitride nanotubes (Kleinerman et al., 2017) in CSA in their native state.

The correlation between direct imaging of the "dope" in its liquid state and of fiber, spun from the "dope" allowed us to study the effect of CNT behavior in the solution on final fiber structure and alignment, which are directly related to fiber mechanical and electrical properties. By a combination of x-ray analysis, with a focused ion beam (FIB) fiber cross-sectioning, and high-resolution electron microscopy for morphological and chemical analysis, we have provided nanometric structural information of the individual CNTs and CNT fibers, in terms of the basic nanotube properties, the degree of fiber alignment, the degree of purity and porosity.


Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True Solutions of Single-Walled Carbon Nanotubes for Assembly into Macroscopic Materials. Nat. Nanotechnol. 2009, 4, 830–834.

Davis, V. A.; Ericson, L. M.; Parra-Vasquez, a. N. G.; Fan, H.; Wang, Y.; Prieto, V.; Longoria, J. A.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Billups, W. E.; Adams, W. W.; Hauge, R. H.; Smalley, R. E.; Pasquali, M. Phase Behavior and Rheology of SWNT in Superacids. Macromolecules 2004, 37, 154–160.

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E.; Fairchild, S. B.; Ferguson, J. B.; Maruyama, B.; Kono, J.; Talmon, Y.; Cohen, Y.; Otto, M. J.; Pasquali, M. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity. Science 2013, 339, 182–186.

Kleinerman, O.; Liberman, L.; Behabtu, N.; Pasquali, M.; Cohen, Y.; Talmon, Y. Direct Imaging of Carbon Nanotube Liquid-Crystalline Phase Development in True Solutions. Langmuir 2017, 33, 4011–4018.

Onsager, L. The Effects of Shape on the Interaction of Colloidal Particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659.

Flory, P. J. Phase Equilibria in Solutions of Rod-Like Particles. Proc. R. Soc. A Math. Phys. Eng. Sci. 1956, 234, 73–89.

Kleinerman, O.; Parra-Vasquez, A. N. G. N. G.; Green, M. J. J.; Behabtu, N.; Schmidt, J.; Kesselman, E.; Young, C. C. C.; Cohen, Y.; Pasquali, M.; Talmon, Y. Cryogenic-Temperature Electron Microscopy Direct Imaging of Carbon Nanotubes and Graphene Solutions in Superacids. J. Microsc. 2015, 259, 16–25.

Kleinerman, O.; Adnan, M.; Marincel, D. M.; Ma, A. W. K.; Bengio, E. A.; Park, C.; Chu, S.-H.; Pasquali, M.; Talmon, Y. Dissolution and Characterization of Boron Nitride Nanotubes in Superacid. Langmuir 2017, 33.

Olga Kleinerman
Olga Kleinerman
Calgary university and Technion